
2020-08-28

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Recursive
mathematical

functions

2
Recursive mathematical functions

Outline

• In this lesson, we will:

– Examine and implement recursive mathematical formulas:

• The factorial function

• Binomial coefficients

• The Fibonacci numbers

• The calculation of xn for an integer exponent

3
Recursive mathematical functions

Factorial

• The factorial function can be defined recursively:

• Such a recursive definition is easy to implement:
 unsigned int factorial(unsigned int n) {

 if (n <= 1) {

 return 1;

 }

 unsigned int simpler_result{ factorial(n - 1) };

 return n * simpler_result;

 }

 }

 

1 1
!

1 ! 2

n
n

n n n


 

 

return n * factorial(n - 1);

else {

4
Recursive mathematical functions

Binomial coefficients

• Binomial coefficients can also be defined recursively:

• This is also easy to implement:
 unsigned int binomial(unsigned int n, unsigned int k) {

 if (k > n) {

 return 0;

 } else if ((k == 0) || (k == n)) {

 return 1;

 }

 unsigned int result_1{ binomial(n - 1, k) };

 unsigned int result_2{ binomial(n - 1, k - 1) };

 return result_1 + result_2;

 }

 }

0

1 0 or

1 1
otherwise

1

k n

k k nn

k n n

k k




   
  

              

else {

return binomial(n - 1, k) + binomial(n - 1, k - 1);

2020-08-28

2

5
Recursive mathematical functions

Fibonacci numbers

• The Fibonacci numbers are defined recursively:

• This is also easy to implement:
 unsigned int fibonacci(unsigned int n) {

 if (n == 0) {

 return 0;

 } else if (n == 1) {

 return 1;

 }

 unsigned int result_1{ fibonacci(n - 1) };

 unsigned int result_2{ fibonacci(n - 2) };

 return result_1 + result_2;

 }

 }

 
   

0 0

1 1

1 2 otherwise

n

nF n

F n F n




 
   

else {

return fibonacci(n - 1) + fibonacci(n - 2);

6
Recursive mathematical functions

Fibonacci numbers

• Here is a different implementation of the Fibonacci numbers:
 unsigned int fibonacci(unsigned int n) {

 unsigned int values[2]{0, 1};

 for (unsigned int k{2}; k <= n; ++k) {

 values[k%2] = values[0] + values[1];

 }

 return values[n%2];

 }

This is called an iterative implementation
 – The statements in the for-loop body are iterated n – 1 times

0

1

1

1

1

2

3

2

3

5

8

5

8

13

21

13

21

34

55

34

55

89

144

89

7
Recursive mathematical functions

Fibonacci numbers

• If we try calculating the Fibonacci numbers from F(0) to F(47),

 here are the following times:

• In your course on algorithms,

 you will learn about dynamic programming or memoization

– This algorithm design technique can significantly improve the run-
time of recursive implementations

Implementation Time (s)

Recursive implementation

Iterative implementation

109.437

0.015

8
Recursive mathematical functions

Fibonacci numbers

• Mathematicians have come up with an alternative recursive
definition of the Fibonacci numbers:

– Exercise: implement this variation yourself

        

   
2 2

0 0

1 1 or 2

2 1 if 2 ; that is, is even

1 if 2 1; that is, is odd

n

n n
F n

F k F k F k n k n

F k F k n k n




 
    

    

2020-08-28

3

9
Recursive mathematical functions

Integer exponents

• Here is a straight-forward recursive definition of calculating xn

• This is also easy to implement:
 double power(double x, int n) {

 if (n == 0) {

 return 1.0;

 } else if (n < 0) {

 return 1.0/power(x, -n);

 } else {

 double result{ power(x, n - 1) };

 return x*result;

 }

 }

 1

1 0

1
0

otherwise

n
n

n

n

nx
x

x x







  




10
Recursive mathematical functions

Integer exponents

• Consider this alternative recursive

 definition of calculating xn

• This is also easy to implement:
 double power(double x, int n) {

 if (n == 0) {

 return 1.0;

 }

 return 1.0/power(x, -n);

 }

 double result{ power(x, n/2) };

 return result*result;

 }

 double result{ power(x, n/2) };

 return x*result*result;

 }

 }

 

 

2

2

1 0

1
0

if 2 ; that is, is even

if 2 1; that is, is odd

n
n

k

k

n

n
x

x
x n k n

x x n k n





 


 
 

  


Remember, we are using
integer division here

else if (n < 0) {

else if ((n%2) == 0) {

else {

11
Recursive mathematical functions

Integer exponents

• Question: What happens if I implement the following?
double power(double x, int n) {

 if (n == 0) {

 return 1.0;

 } else if (n < 0) {

 return 1.0/power(x, -n);

 } else if ((n%2) == 0) {

 return power(x, n/2)*power(x, n/2);

 } else {

 return x*power(x, n/2)*power(x, n/2);

 }

}

12
Recursive mathematical functions

Summary

• Following this presentation, you now:

– Understand the recursive implementation of:

• The factorial function

• The binomial coefficients

– Understand that the naïve recursive definition of the Fibonacci
numbers translates poorly to an implementation

• The iterative variation is much more efficient

– Have been exposed to a much more efficient recursive definition

– Realize there are often many different recursive definitions,

 as seen with the calculation of xn

– Understand that some implementations can be much more efficient

2020-08-28

4

13
Recursive mathematical functions

References

[1] Wikipedia,

 https://en.wikipedia.org/wiki/Factorial

 https://en.wikipedia.org/wiki/Binomial_coefficient

 https://en.wikipedia.org/wiki/Fibonacci_numbers

 https://en.wikipedia.org/wiki/Exponentiation#Integer_exponents

14
Recursive mathematical functions

Acknowledgments

None so far.

15
Recursive mathematical functions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Recursive mathematical functions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

