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Outline 

• In this lesson, we will: 

– Examine and implement recursive mathematical formulas: 

• The factorial function 

• Binomial coefficients 

• The Fibonacci numbers 

• The calculation of xn for an integer exponent 
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Factorial 

• The factorial function can be defined recursively: 

 

 

 

 

• Such a recursive definition is easy to implement: 
  unsigned int factorial( unsigned int n ) { 

      if ( n <= 1 ) { 

          return 1; 

      } 

        unsigned int simpler_result{ factorial( n - 1 ) }; 

        return n * simpler_result; 

     } 

 } 
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return n * factorial( n - 1 ); 

else { 
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Binomial coefficients 

• Binomial coefficients can also be defined recursively: 

 

 

 

 

• This is also easy to implement: 
  unsigned int binomial( unsigned int n, unsigned int k ) { 

      if ( k > n ) { 

          return 0; 

      } else if ( (k == 0) || (k == n) ) { 

          return 1; 

      } 

          unsigned int result_1{ binomial( n - 1, k ) }; 

          unsigned int result_2{ binomial( n - 1, k - 1 ) }; 

          return result_1 + result_2; 

      } 

  } 
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else { 

return binomial( n - 1, k ) + binomial( n - 1, k - 1 ); 
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Fibonacci numbers 

• The Fibonacci numbers are defined recursively: 

 

 

 

 

• This is also easy to implement: 
  unsigned int fibonacci( unsigned int n ) { 

      if ( n == 0 ) { 

          return 0; 

      } else if ( n == 1 ) { 

          return 1; 

      } 

          unsigned int result_1{ fibonacci( n - 1 ) }; 

          unsigned int result_2{ fibonacci( n - 2 ) }; 

          return result_1 + result_2; 

      } 

  } 
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else { 

return fibonacci( n - 1 ) + fibonacci( n - 2 ); 

6 
Recursive mathematical functions 

Fibonacci numbers 

• Here is a different implementation of the Fibonacci numbers: 
  unsigned int fibonacci( unsigned int n ) { 

      unsigned int values[2]{0, 1}; 

 

      for ( unsigned int k{2}; k <= n; ++k ) { 

          values[k%2] = values[0] + values[1]; 

      } 

 

      return values[n%2]; 

  } 

This is called an iterative implementation 
    –  The statements in the for-loop body are iterated n – 1 times 

0 

1 

1 

1 

1 

2 

3 

2 

3 

5 

8 

5 

8 

13 

21 

13 

21 

34 

55 

34 

55 

89 

144 

89 

7 
Recursive mathematical functions 

Fibonacci numbers 

• If we try calculating the Fibonacci numbers from F(0) to F(47), 

 here are the following times: 

 

 

 

 

 

• In your course on algorithms, 

 you will learn about dynamic programming or memoization 

– This algorithm design technique can significantly improve the run-
time of recursive implementations 

 

Implementation Time (s) 

Recursive implementation 

Iterative implementation 

109.437 

0.015 
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Fibonacci numbers 

• Mathematicians have come up with an alternative recursive 
definition of the Fibonacci numbers: 

 

 

 

 

 

 

– Exercise:  implement this variation yourself 
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Integer exponents 

• Here is a straight-forward recursive definition of calculating xn 

 

 

 

 

 

• This is also easy to implement: 
 double power( double x, int n ) { 

     if ( n == 0 ) { 

         return 1.0; 

     } else if ( n < 0 ) { 

         return 1.0/power( x, -n ); 

     } else { 

         double result{ power( x, n - 1 ) }; 

         return x*result; 

     } 

 } 
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Integer exponents 

• Consider this alternative recursive 

      definition of calculating xn 

 

 

• This is also easy to implement: 
 double power( double x, int n ) { 

     if ( n == 0 ) { 

         return 1.0; 

     } 

         return 1.0/power( x, -n ); 

     } 

         double result{ power( x, n/2 ) }; 

         return result*result; 

     } 

         double result{ power( x, n/2 ) }; 

         return x*result*result; 

     } 

 } 
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Remember, we are using 
integer division here 

else if ( n < 0 ) { 

else if ( (n%2) == 0 ) { 

else { 
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Integer exponents 

• Question: What happens if I implement the following? 
double power( double x, int n ) { 

    if ( n == 0 ) { 

        return 1.0; 

    } else if ( n < 0 ) { 

        return 1.0/power( x, -n ); 

    } else if ( (n%2) == 0 ) { 

        return power( x, n/2 )*power( x, n/2 ); 

    } else { 

        return x*power( x, n/2 )*power( x, n/2 ); 

    } 

} 
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Summary 

• Following this presentation, you now: 

– Understand the recursive implementation of: 

• The factorial function 

• The binomial coefficients 

– Understand that the naïve recursive definition of the Fibonacci 
numbers translates poorly to an implementation 

• The iterative variation is much more efficient 

– Have been exposed to a much more efficient recursive definition 

– Realize there are often many different recursive definitions, 

 as seen with the calculation of xn 

– Understand that some implementations can be much more efficient 
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Colophon  

These slides were prepared using the Georgia typeface. Mathematical 
equations use Times New Roman, and source code is presented using 
Consolas. 

 

The photographs of lilacs in bloom appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical 
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see 

https://www.rbg.ca/ 

for more information. 
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Disclaimer 

These slides are provided for the ECE 150 Fundamentals of 
Programming course taught at the University of Waterloo. The 
material in it reflects the authors’ best judgment in light of the 
information available to them at the time of preparation. Any reliance 
on these course slides by any party for any other purpose are the 
responsibility of such parties. The authors accept no responsibility for 
damages, if any, suffered by any party as a result of decisions made or 
actions based on these course slides for any other purpose than that for 
which it was intended. 

 


